The Very Best Cables - Part One

Page 1 | Page 2

Wanna get the very best cables FREE? Go buy a receiver or an integrated amplifier. It's true, and, of course, the reason that it's true ― at least for certain interconnects ― is that neither of those products uses any cables at all.

AR-int2a.jpgInstead of an ordinary component system, that has separate EVERYTHING, and needs interconnects to run from a tuner to a preamp and from the preamp to a power amplifier, integrated components (there are even some "super" receivers that include a CD or DVD player, too) build everything into a single box and, at least for their own internal connections, need no cables at all.

Think about it; it really CAN be the best of all possible worlds: Consider just connectors, for example. Which type is best? RCA? XLR? CAMAC or FISCHER connectors? (like some of the older Mark Levinson gear used to use) Something else, entirely? Not using cables means that integrated components don't use connectors, either, so every internal connection is hard-wired (unless special conditions or applications require otherwise) and, many would argue, "perfect".

What about the wire that's used to connect the various sections together? For most electronic component, integrated or not, the "wire" isn't wire at all, but circuit board traces ― nice wide flat "ribbons" that many would contend are, because of their shape, better and lower in inductive losses than the conventionally round wiring used in cables might be. Even for those very rare (and usually very expensive products) that are "point-to-point" wired by hand, considerations of "skin effect" or even just convenience can result in wires being of a smaller effective "gauge" ("AWG" American Wire Gauge is a world standard for wire thickness and therefore of effective metal content) and, because thinner wires (less total metal per length) have more resistance to current flow, generous circuit board traces can offer lower effective resistance, too.

AR-int1a.jpgAnd how about the actual metal that the "wires" are made of? One of the reasons commonly given for some cable designers' preference for silver or silver-plated-copper wiring is the FACT (Yes, it really IS true) that silver is (take your pick) more conductive or less resistant to current flow than copper. The actual difference will vary with the purity and crystal structure of both metals, but can be as much as about 11%. That's impressive, but if you just want less total resistance from EITHER material, all you have to do is to make your cables, internal wiring, or circuit traces shorter. I don't know of any printed circuit boards that use anything other than copper conductors, but the simple fact that integrated components are all built in a single box means that, whether by PCB traces or by actual wires soldered point-to-point, their wiring will, except for the truly rare exception, ALWAYS be shorter and therefore (given the same gauge of the same metal) of lower resistance than any cable, regardless of the type of metal used for its conductors.

The one place where cables and (yes, it, too) point-to-point internal wiring CAN (but not necessarily WILL) have an advantage over PCB traces is in their dielectric. The dielectrics of printed circuit boards, ― the material that the substrate (the board, itself) is made of ― range from epoxy-impregnated paper to various forms of woven and non-woven glass fiber with epoxy, to phenolics, to glass and polyester, to (on special order), polyethylene and polyethylene mixes, and, ultimately, to PTFE Teflon®. What the substrate is made of and what material the circuit traces are sealed with to prevent oxidation or other chemical effects will affect the performance or the PCB, just as the insulating material on a wire or a cable will, and Teflon®, the best plastic insulating material currently available is much more likely to be used on point-to-point wiring or in cables than it is in PCB substrates. Even so, the advantage of shorter run lengths still goes to the integrated component, regardless of how it is wired.

Page 1 | Page 2
comments powered by Disqus

Audiophile Review Sponsors